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A natural architecture for nanoscale quantum computation is that of a quantum 
cellular automaton. Motivated by this observation, we begin an investigation of 
exactly unitary cellular automata. After proving that there can be no nontrivial, 
homogeneous, local, unitary, scalar cellular automaton in one dimension, we 
weaken the homogeneity condition and show that there are nontrivial, exactly 
unitary, partitioning cellular automata. We find a one-parameter family of 
evolution rules which are best interpreted as those for a one-particle quantum 
automaton. This model is naturally reformulated as a two component cellular 
automaton which we demonstrate to limit to the Dirac equation. We describe 
two generalizations of this automaton, the second of which, to multiple inter- 
acting particles, is the correct definition of a quantum lattice gas. 

KEY WORDS: Quantum cellular automaton; quantum lattice gas; quantum 
computation. 

1. I N T R O D U C T I O N  

The realization that incentives to develop smaller and faster computers 
will eventually drive the devices from which they are constructed into the 
quantum regime motivated research into quantum mechanical limitations 
on deterministic computation as early as the 1970s. ~1~ The subsequent 
conceptions of universal quantum simulator by Feynman ~21 and quan- 
tum Turing machine by Deutsch ~3~ initiated a series of investigations ~4~ 
into how aspects of quantum mechanics, specifically superposition and 
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interference, might be exploited for computational purposes. Shor's 
remarkable discovery of a polynomial time quantum algorithm for fac- 
torization ~5) (and the centrality of the factoring problem to modern cryp- 
tography 16)) has led to redoubled interest in the design and construction of 
quantum computational nanodevicesJ 7) It should be emphasized that the 
goal here is a computational device which will run quantum algorithms, not 
a quantum device which will run deterministic (8" 9) or probabilistic ~~ algo- 
rithms. 

For a variety of reasons--the wire and gain problems, and the 
pragmatic observation that an array of simple devices is often easier to 
design and build than a single, more complicated device--it seems likely 
that massive parallelism will optimize nanoscale computer architecture. (~) 
In this paradigm, a quantum computer is a quantum cellular automaton 
(QCA): the state of each simple device (cell) in the array depends on the 
states of the cells in some local neighborhood at the previous timestep. 
Unlike the original cellular automaton (CA) models for parallel computa- 
tion of von Neumann and Ulam, c ~z) where this dependence is deterministic 
or probabilistic, here the dependence is quantum mechanical: There is a 
(complex) probability amplitude for the transition to each possible state, 
subject to the condition that the evolution be unitary, so that the total 
probability--the sum of the norm squared of the amplitude of each con- 
figuration--is always one. 

QCA, therefore, provide a laboratory for analyzing both potential 
quantum computer architectures and algorithms; this is the motivation for 
initiating our study of them in this paper. Computation motivated study of 
QCA seems to have originated with the interesting work of Gr6ssing and 
ZeilingerJ TM Their models, however, are only approximately quantum 
mechanical because, they argue, "except for the trivial case, strictly local, 
unitary evolution of the whole QCA array is impossible"J 141 Consequently, 
they study CA whose evolution is both nonunitary ~ ~3~ and, although "prob- 
ability"-preserving, nonlinear, t~4~ In Section 2 we begin by proving the 
following precise version of their claim: 

No-Go Lemma.  In one dimension there exists no nontrivial, 
homogeneous, local, scalar QCA. More explicitly, every band r-diagonal 
unitary matrix which commutes with the one-step translation matrix is also 
a translation matrix, times a phase. 

Then we continue by showing that even a slight weakening of the 
homogeneity/translation invariance condition allows nontrivial unitary 
evolution. Thus we will reserve the adjective "quantum" lbr CA with 
exactly unitary, nontrivial, local evolution, in contrast to the usage by 
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Gr6ssing, Zeilinger, et  al. ~13" 14~ and Lent and Tougaw. 19~ These are the 
QCA which should best model truly quantum parallel architectures. In this 
paper we consider only the one dimensional situation; but this is not irrele- 
vant for computational complexity issues, since reversible CA capable of 
universal computation exist in one dimension Ils~ and reversible deter- 
ministic CA are, of course, unitary. 

Section 3 contains output from several simulations of one-dimensional 
QCA. Simulation on a deterministic computer must inevitably be slow, but 
this is acceptable since our goal here is understanding rather than the solu- 
tion of any specific problem. It is easy to see qualitative differences from the 
simulations of Gr6ssing, Zeilinger, et  al/~3, 14~; in particular, our simula- 
tions display particle-like features. 

The latter observation motivates our reinterpretation in Section 4 of 
the evolution rule of such a QCA as the scattering rule for a quantum 
particle automaton. In this form the model is equivalent to Feynman's path 
integral formulation for a Dirac particle; 1'6~ it is straightforward to solve 
the model exactly and to give a physical interpretation to the parameter in 
the scattering rule. 

A lattice gas ~17~ formulation of this quantum particle automaton 
would consist of an array of nodes occupied by left- and/or right-moving 
particles which jump to the next node at the next timestep. Since there is 
only one particle in the model the amplitudes for left- and right-moving 
particles at a given node may be combined into a two-component field as 
in the one dimensional Dirac equation in the chiral representation. For- 
mulated as such a two component QCA, our quantum particle automaton 
is unitarily equivalent to the quantum lattice Boltzmann equation of Succi 
and Benzi c~8~ and to the one dimensional version of Bialynicki-Birula's 
QCA.I ~9~ Since a two component QCA evades the conclusion of the No-Go 
Lemma, in Section 5 we find the most general homogeneous/translation- 
invariant unitary evolution rules for a neighborhood of radius one. The 
lattice gas paradigm motivates another generalization, however, to multiple 
(interacting) quantum particles. This new system, described in Section 6, is 
a quantum lattice gas automaton (QLGA) and may be expected to be rele- 
vant for modelling parallel quantum architectures constructed from few- 
electron devices. 

As Landauer ~2~ and others ~2~ have emphasized, achieving practical 
quantum computation will be difficult for a variety of reasons. The most 
fundamental problem is decoherence, ~22"23J which destroys the delicate 
interference phenomena on which quantum algorithms such as Shor's 15~ 
depend. In Section 7 we observe that this is among the important issues in 
quantum computation which can be investigated using these models and 
also remark on some related research directions. 
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2. Q U A N T U M  CELLULAR A U T O M A T A  

A CA consists of a lattice L of cells together with afieM q~: ~ x L ~ & 
where I~ denotes the nonnegative integers labeling timesteps and S is the 
set of possible states in which the field is valued. The field evolves accord- 
ing to some local rule, i.e., ~ satisfies a recurrence relation of the form 

q~,+ ,(x) = f(4~,(x + e) le  e E(t, x)) (1) 

where E(t, x) is a set of lattice vectors defining local neighborhoods for the 
automaton. 

In the Schr6dinger picture of quantum mechanics the state of a system 
at time t is a state vector in some Hilbert space (see, e.g., ref. 24). The state 
vector evolves locally and unitarily, i.e., 

q~,+,= UqS, (2) 

where U is a unitary matrix (more precisely, operator: U U * = I =  U'U). 
Thus, if the configuration space is discrete, and the Hilbert space has a 
computational basis Ix),  x eL ,  it is natural to try to construct a QCA 
model where qS,(x) is the (complex scalar) coefficient of Ix) in ~b, and the 
local evolution rule (1) is the unitary evolution rule (2) in this basis. Notice 
that this forces the QCA to be additive in Wolfram's terminology, 125~ i.e., 
( 1 ) becomes 

q~,+l(x)= ~ w(t,x+e) ck,(x+e) (3) 
e E E ( t , x )  

where the coefficients w(t, x + e) are constrained by the unitarity condition. 
If both E(t ,x)  and w ( t , x + e )  are independent of t and x, the CA is 
homogeneous. 

In one dimension ~b, can be written as a column vector with ordered 
entries qS,(x), in which case locality corresponds to U being band diagonal. 
If, furthermore, the QCA is homogeneous, U must be invariant under the 
action of the translation operator T on the lattice--the permutation matrix 
with l's on the subdiagonal--and (2) becomes 

~ , + , i - 1 )  w_~ ... w+,. ~ , ( - I )  

/ ~b'+'(+O) 1 = w_,. . . ,  w+,. ~b,(O) 
\~,+l I ) w_~ ... w+~... ~,(+. 1) 

(4) 
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where w(t, x + e ) -  w,,. (With periodic boundary conditions, of course, the 
top and bottom r rows will wrap around.) Gr6ssing and Zeilinger consider 
the case r = 1, but find no nontrivial unitary matrix U. More generally: 

No-Go Lemma. In one dimension there exists no nontrivial, 
homogeneous, local, scalar QCA. More explicitly, every band r-diagonal 
unitary matrix U which commutes with the one-step translation matrix T 
is also a translation matrix T k for some k ~ 7/, times a phase. 

Proof.. When r = 0 ,  U =  WoI and unitarity implies [w 0[-~= 1, so U is 
the zero-step translation matrix (the identity) times a phase. Assume that 
the statement is true for r - 1 .  For a one-step translation-invariant band 
r-diagonal matrix, unitarity implies 

v,'_,.(O , .+w_,.+l~P'_,.+l+...  +w,_lff ' , .  l+w,.ff ' , .=l (5_,.) 

)'t'_~+l)i~_r+ ... + ) ' v r _ l ~ , _ 2 + w ~ , . _ l = 0  (5_~+1) 

w,_ 1 ~i~_, + w,.~i~_,.+ 1 = 0  (5~_1) 

Wrff'_,.=0 (5,) 

together with the complex conjugate equations. By Eq. (5,.), at least one of 
w, and w ,  vanishes, say w,.. Then we may assume w_,. 4: 0; otherwise the 
conclusion follows immediately from the inductive hypothesis. But then Eq. 
(5,._1) forces w r _ t = 0 ;  .... Eq. (5_,+1) forces w , + t = 0 ;  and Eq. (5_,.) 
becomes [w r]2= 1, i.e., the only nonzero weight, w ,., is a phase. Then 
U= w ,  T r, where T" is the r-step translation matrix. II 

CA which evolve simply by translation are not very interesting, so 
Gr6ssing and Zeilinger relax the unitarity constraint, setting 

w _  1 = i ~ ,  Wo = 1,  w + l = / ~  

so that the evolution is only approximately unitary, with errors of O([fi] 2) 
accumulating at each timestepJ TM Since the evolution is nonunitary, 
quantum probability is not preserved. Instead, all the amplitudes are 
normalized by an overall factor at each step to make ~.,. [~b,(x)[ 2= 1; this 
may be thought of as a nonlocal (and non-quantum mechanical) aspect of 
the evolution. 114~ 

Our choice, instead, is to weaken the homogeneity condition but to 
insist still on exactly unitary, local evolution, thus maintaining consistency 
with standard quantum mechanics. The evolution matrix in (4) is one-step 
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translation invariant, i.e., T U T - ~ =  U; a natural way to relax this con- 
straint is to require T 2 U T - 2 =  U, so that the evolution is only two-step 
translation invariant. For r = 1 we have then 

U=  l 
" �9 " / a b c 

d e f  
a b c 

d e f  

and unitarity requires 

a d + b b + c ( =  1, d d + e ( +  f f  = 1 

b d + c ( = O ,  e6+ f/~ = 0 

c6 = O, f d  = 0 

(6) 

together with the complex conjugate equations�9 
There are two types of solutions to these equations. The uninteresting 

ones have only a and d (or c and f )  nonzero, both with norm 1; in this case 
the evolution is by translation and multiplication by alternating phases. 
The interesting solutions to (6) have c =  d =  0 (or a = f =  0) and the matrix 

S : = ( ;  f ]  Ior  (b  d ; ] ]  (7) 

unitary; in this case U is block diagonal, each block acting only on a pair 
of adjacent cells. 

Evolving by U at each timestep would partition the CA into a set of 
noninteracting systems each comprised of a pair of adjacent cells. Instead, 
we evolve by U and by T U T -  ~ at alternating timesteps, changing the pair- 
ing and allowing propagation. Such alternating evolution has been referred 
to as a staggered rule for a checkerboard model in the context of 
probabilistic CA and two-dimensional statistical mechanics models, ~ and 
as a partition#~g CA in the context of reversible CA. ~-'v~ Since unitary evolu- 
tion includes deterministic reversible evolution, the No-go Lemma applies 
in the latter context in one dimension (of course, the overall phase referred 
to in the statement of the lemma must be 1), and it is natural that triviality 
has been evaded there in the same way. 
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3. S I M U L A T I O N S  

The matrix S ~  U(2) may be parametrized as 

(e;~ sin 0 d/~ cos 0 )  
S = \e~. cos 0 e ~'~ sin 

with ~ - f l  - ), + 6 - r~(mod 2z~). Rather than continuing in full generality, 
we shall impose parity invariance, which forces b = e and a - - f  (or b = e 
and c = d) in (7). Dividing out an overall phase which is unobservable (i.e., 
has no effect on probabilities), we find that the cell pair evolution matrix 
S becomes 

( i s i n 0  cos0"~ 
S = \ c o s 0  i s in0J  (8) 

Simulation of a single timestep of this QCA is achieved by a series of 
matrix multiplications: 

b , + , ( x - 1 ) ~ = ( i s i n O  cos O ~(r 
r / \ c o s 0  isinO/\ r (9) 

for each x = t + 1 (mod 2), say. Although these matrix multiplications com- 
mute since they evolve disjoint pairs of cells, sequential simulation of this 
intrinsically parallel evolution will be slow, as it always is for CA. Further- 
more, since the field values and the evolution parameters are complex numbers, 

) ) 6  );': i !iiii~ 

~ ~ ~,,  i : " : E ! i ~  ~ 
? ;V;,s176176 

Fig.  I. Two simulations of the r =  I QCA starting with the same initial conditions. Left, 
O=n/6; r ight ,  O=n/3. Time runs upward and periodic boundary conditions have been 
imposed. 

822/85,5-6-3 
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the usual efficiencies of  bitwise computa t ion  are unavailable. Nevertheless, 
simulation of  small systems is easy and informative; an additional,  more  
serious difficulty will not  appear  until the simulations of  Q L G A  in Section 5. 

Figure 1 shows simulations of  our  Q C A  for 0 =  ~/6 and 0 =  re/3, 
starting from the same r andom initial condition. The darkness of  each 

Fig. 2. The r = I QCA with 0 = rt/4 and equal nonzero amplitudes at x = 15, 16. 
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cell is (positively) proportional to its probability, i.e., the norm squared 
of its amplitude (field value), and it appears that there is a probability 
flow in each case, slower for 0 = z~/3. This is expected since for 0 =  r~/2, 
U is proportional to the identity (the overall factor of i is unobservable) 
and there is no flow, while for 0 =  0, S simply interchanges the states 

~ ~ n t ~ l a m m t ~  . : J  ~ B [ ] : n ~  ~ [ ] m e  a t :  

; : l iB �9  : n ; zg  [;13 ~l~:rJ~g3 [ ]  mW2: l  [ ] ~ [ J  

n m  : ~  m : m  m a e e  h u e  � 9  m 
, nu :  :l unnm [] [] l~m : mm : ~:i 

i~ 9l ~gl m~ m L3m~ :i~ : [] m~:  []rJ 

: ,  m : [ ]  ~ me  ~n  ,Jml o , :um~a~:ta e l  

-m ~ :~~ ,~  : ~ :mn  ~ n : ~  [],-me�9 elm 

m= 

c: etnlm e l �9149 ~Jel~[][ ]ma [ ] , :  

�9 l ~ l e l I : ~ [ :  [ ] 1 1  la umel mu:  ) el 
: :  ' : n r~e l ,  gem la ~I mla �9 :~ n : :  

: lam~mmm~ mB ~n  t~ ~ t~ ~ m um_e  

: ,  ~ [ ] ~ ) i  i 01  I~IBFJI211 I I I  MUm�9  

~mlOe [~ ~oo [] m~eoaa m [][] 

~ : [ ] : : m  n ~ m  : :  , ~ [ ]  , v n ,  [ ]  [ ] [ ]  , m  [ ]  [ ]  

c~la:) : :  m ~ ::m~J : i  t ae l : : l a : :  mn  el :~ml 

(~;m ~ mmlg[]~:uu ia g : : ~m [ ]m , : l  [] mm 

m [ ]  i t lC l l . e l  m m e l om , )e l  r : la  e 

e [] ~n  mna [ ] u  ~: ~ nee  m ,me u 

[] tJ[] []J:ui�9 ,:J ~ []umLl::~ ~ m 

gJ em : :  e~m~m 

mean :  ~, ~mt~ ca la t~mr~ ~;: :  nee  
0l ~ t a : t ]  u [ ] ~  : ~m~ la C:luam i 

manta n ~ : ~ B  ~ a  c l  ~ ~mn;  el m l a  

: ~aa~ , :  ::an B [ ] l a [ ] ~  ~ t 3 • � 9  e l  L] [ l ~ lm  

i : e l  [ ] e l  m ~ ; ]  t ; : :  r ;  (3 ~ r [ ] l ~ [ ]  
~=~m~: �9 �9 n t : a  i~ mm ta n~mtT~ 

~L :O :  ~ m mla t~m ~] [ : i l a  e e l o t~ ,~u  

[ ]  [ ]  :J r_i : � 9  :J ~ : : r J [ ]  I l l  
14:mtJt: m ~n!~ m~mmmmaue  ; :  [ ]  : :m [ ] : )  

i []~ u r j  e~:iczmlseeeem[~ ::~'J~) ~ : :  
c: .[]etxmmmmm[]ln6,tl ::=:: [] 

I m : : me~msmmmmuemumu :: [] m 

: [ ]  ~[~eomlmmemmlammeelelel~a~ :m :  

r ~ :,mln m [ ]  t l  ms m � 9  ta ~u~l:l la ~ l a  ~ mm L:~  t~ 
M : l l l H l l R n ~ a m m [ ] m m m H a o m m l a m i  , 

~smmO[ ] lm lmmemmneme lmemmm 
I m~n~u~gn [ ]~emn~mu~mm~mmmomg 

I~e~uBEsmml~uOsBeummmmuwg l l l l l gmsg  
n e l � 9  m �9  me  m m 1 m m e ai in mini la m me�9 m o m man n a 

�9 [ ]  [ ] i lm lpq [ ]mn lu l [ ]m ln [ ]mn lmzm[ ]mm [ ] l ~mn [ ]m  nuam 

Fig. 3. The same QCA as in Fig. 2 with initial nonzero amplitude only at x = 0. 
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of adjacent cells so that probability propagates with speed 1 in lattice 
units. 

Starting with the simplest symmetric initial condition demonstrates the 
probability propagation more clearly. In the simulation shown in Fig. 2, 
the initial condition is 

S1/x/~ if x~{15,  16} 

otherwise 

Here 0 = n/4. Measuring the locations of the two peaks of the probability 
distribution at successive timesteps indicates that the propagation speed is 
approximately 2/3 in lattice units. 

This is consistent with the evolution of the even simpler initial condi- 
tion shown in Fig. 3. Here the only nonzero initial value is at x = 0. Again 
0 = n/4 and the propagation speed still appears to be approximately 2/3 in 
lattice units. In both of these simulations there are peaks in the probability 
distribution which remain substantially localized for the duration of the 
evolution shown. This behavior, particularly in the symmetric simulation 
shown in Fig. 2, should be contrasted with the results of Gr6ssing, 
Zeilinger, et aL, c 13. ~4~ which demonstrate quite different qualitative features. 
In their simulations macroscopic patterns develop and there is nothing 
which has the particle-like appearance of the persistent localized peaks in 
these probability distributions. 

4. Q U A N T U M  PARTICLE A U T O M A T A  

The underlying particle nature of this alternating/partitioning QCA 
can be seen on the trcdectory lattice dual to the spacetime lattice of the CA. 
As shown in Fig. 4, each adjacent pair of cells acted on by S has a dual 
pair of spacetime edges which intersect and then continue along the same 
trajectories at the next timestep, becoming the spacetime edges dual to the 
same pair of cells. On the spacetime trajectory lattice the alternating action 
of what should now be called the scattering matrix  S is automatic; the 
values of ~b are attached to the edges of the trajectory lattice and undergo 
a unitary transformation by S at each vertex. 

The value of ~b on a left/right-pointing edge of the trajectory lattice 
should be interpreted as the amplitude for a left/right-moving particle being 
there. That is, Eq. (9) means that if there is a right-moving particle at time 
t, at time t + 1 it either becomes a left moving particle with amplitude i 
sin 0 or continues moving right with amplitude cos 0. In particular, if there 
is some nonzero amplitude on each of two intersecting right- and left-going 
edges of the trajectory lattice, they may be evolved independently and then 
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\ / \ /  f ()() ? 
/ \ / \ / \  

Fig. 4. The spacetime CA lattice is the rectangular array of quare cells; the dual particle 
trajectory lattice consists of the diagonal edges. 

added. There is no interaction, so this is effectively a model of a s#~gle par- 
ticle; the QCA is a quantum particle automaton, ck,(x) is the amplitude for 
the particle being in state Ix) during the time interval (t, t +  1), where, if 
x takes integer values on the vertical lines in Fig. 4, 

[left-moving from x + 1 

[x) := O'ight-moving from x 

if t ~ x ( m o d  2) 
(10) 

if t - - x ( m o d 2 )  

That is, the computational basis Ix) is a set of eigenstates of an operator 
measuring more than just position. Projecting onto the position subspace 
adds (incoherently, i.e., the probabilities add) the amplitudes for left-and 
right-movers existing at (t, x), for t - x  (mod 2), and gives a much clearer 
picture of the evolution. Figures 5 and 6 show this representation of the 
simulations of Figs. 2 and 3, respectively. Since the evolution lies within 
the "lightcone," i.e., the propagation speed is less that 1 in lattice units, 
Figs. 5 and 6 are in lightcone coordinates: 

u :=  (t + ( x -  x0)) /2  

v := (t - (x - x 0 ) ) / 2  

where Xo implements a translation of the origin: by 16 in Fig. 5 and by 0 
in Fig. 6. In both figures only the spacetime region covered by 0 ~ u, v ~< 16 
is shown, the origin is at the rear comer, and time runs forward to the 
front corner. The parity dependence (visible in the patterns of alternating 
dark and light cells) in Figs. 2 and 3 has been smoothed out in these so 
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Fig. 5. Position measurements in lightcone coordinates for the QCA of Fig. 2. The 
probability 1 measurement at (0, 0) has been clipped. 

that  both  the probable  particle trajectories as well as their wave-like 
character  are clearly visible. 

That  the solution is as smooth  as shown here suggests that  the quan-  
tum particle au toma ton  may  be a discrete approximat ion  to a con t inuum 
system, possibly with an exact solution. This is, in fact, the case. Al though 
we have been led to it simply by the assumptions of  discreteness, locality, 
and unitari ty (and parity invariance), we will show that this quan tum par-  
ticle au toma ton  is a discrete approximat ion  to the Feynman  path integral 

Fig. 6. The same representation as in Fig. 5, but of the QCA of Fig. 3. The first few (large) 
probabilities in the evolution have been clipped. 
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Fig. 7. A typical initially right-moving path from (u, v)= (0, O) to (7,5) with both left- and 
right-moving final steps and four right-to-left direction changes. 

for a Dirac particle in one dimension. 1~61 Furthermore, it is exactly solv- 
able, even without going to the continuum limit. 

Consider a right-moving particle at (t, x ) =  (0, 0), i.e., ~bo(0)= 1. The 
amplitude G(x) for the particle being in state Ix) at time t is defined to 
be the propagator K(t, x; 0, 0). This is exactly the (coherent) sum of the 
amplitudes of all possible paths in the trajectory lattice from (0,0) to 
(t, x)-- the sum-over-histories, or Feynman path sum. Figure 7 shows two 
typical paths a right-moving particle from (0, 0) might take, arriving in left- 
moving state I x - l )  or right-moving state Ix) just after time t [ t - x  
(mod 2)]. Each path consists of u steps right and v steps left, followed by 
the terminal step, and is completely characterized by the locations of the 
right-to-left direction changes--the points circled in Fig. 7. If there are k 
such direction changes, a path ending at Ix - 1 ) has amplitude 

(i sin 0) ~ - I  (cosO)"+L'-tz~-II=(cosO)"+v(itanO) 2k-l (11) 

and one ending at Ix) has amplitude 

(i sin 8) "-k (cos 8)" + v-_,, = (cos 8)" +" (i tan 0) 2~ (12) 
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Counting the numbers of paths with k direction changes and multiplying 
by the amplitudes in (11) and (12) gives 

r  ~. ( k - - l l ) (  v ) k=, k - 1  (/ tanO) 2k--' 

= (cos O)" + v. i tan 0 ,_FI(1 - u, - v; 11 -tan-'O) (13) 

and 

[ r  "+~' ~ ( v ) + ( l - ~ ( v ) )  k k 1 
k = '  

= (cos O)"+"[c~(v) - (1 - c~(v)) u tan-' 0 zF~(1 - u, 1 - v; 21 - tan-'0)] 

(14) 

where the 6(v) term counts the single k = 0  path which contributes only 
when v=0 ,  and ,_F) is the Gauss hypergeometric function. These 
amplitudes, together with those for an initially left-moving path [which 
may be obtained from (13) and (14) by interchanging u and v], define 
K(t, x; 0, 0) for the quantum particle automaton. By linearity (additivity), 
therefore, they provide an exact solution for the evolution of any initial 
condition. 

Although Lorentz invariance is manifestly broken by the spacetime 
lattice, it is regained in the continuum limit: Let the lattice spacing be e, 
i.e., replace 0 by eO and (u, v) by (u/e, v/eL Then for u, v~O, as e---, O, 

and 

~,(x - 1 ) ~ / t a n  e0 o F 1 ( - ; 1 1 -  (uv~2) tan2eO) 

~OJo(rO) 

r  ~ - ( u / e )  tan-" e0 oFl( --; 21 - -  (uv/e z) tan 2 e 0 )  

- (ue/r) J,(r0)  

(15) 

(16) 

where oF, is obtained by taking the confluent limit of_,F, twice, ~28) J; is the 

ith-order Bessel function of the first kind, and r := 2 ~ = ~ is the 
spacetime separation of (0, 0) and (t, x). The limits (15) and (16), together 
with their initially left-moving counterparts (still obtained by interchanging 
u and v), give exactly the continuum propagator for the Dirac equation for 
a particle of mass 0. ~29) When 0 = 0 ,  the contributions from (15) and (16) 
vanish and the propagator has support only on the lightcone [the 6(v) 
term in (14)]. These results explain our observations about the simulations 
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shown in Figs. 1-3: For 0 = 0 the propagation is at speed 1 in lattice units 
(i.e., is along the lightcone); as 0 increases, the "mass" tan 0 increases and 
the speed decreases; when 0 = re/2, the "mass" is infinite and there is no 
propagation. 

5. T W O - C O M P O N E N T  Q U A N T U M  CELLULAR A U T O M A T A  

In the chiral representation, the one-dimensional Dirac equation 
describes the evolution of a two-component complex spinorJ 291 Although 
our interests in this paper are primarily to investigate possible QCA rather 
than to construct discrete models for fundamental physical processes] 3~ 
the results from the previous section indicate that in the quantum particle 
automaton it is natural to combine the amplitudes for the single particle 
leaving position x to the left and to the right into a two-component field 
0,(x) := (q~,(x- 1), ~b,(x)) for x - t  (mod 2) and motivate consideration of 
two-component QCA. In terms of ~, the evolution rule (9) becomes 

(0 ~ ;s n0   cos0 00) 
~O,+~(x)= cosOj t# , ( x -1 )+~ i s inO  ~ , ( x +  1) (17) 

The most general local evolution rule for a two-component QCA still has 
the form (3), with ~b replaced by the two-component field ~O defined at a// 
cells and the coefficients w now representing 2 x 2 matrices. The evolution 
rule (17) for our quantum particle automaton already shows that the con- 
clusion of the No-Go Lemma can be evaded in a two-component, one- 
dimensional QCA; the issue becomes identifying all possible local, 
homogeneous, unitary evolution matrices U as in (4). For r =  1, the most 
general local evolution rule is 

~,+ I(X)= W_I~,(X--1) + Wo~,(X) + W +It~,(X + I ) (18) 

and the unitarity constraints are still those given by Eqs. (5,,): 

W - -  1 H;t-- 1 -t- W 0 W ;  "t- W + 1 wt+  1 = I ( 19 _, ) 

WOW*_ 1 + w+,wo* = 0 (190) 

w+lwt_l = 0  (19+1) 

together with their Hermitian conjugate equations. 
Parity invariance imposes two additional constraints: 

w _ , = P w + , P - '  [ p : = ( 0 1  10)] (20) 

Wo = PwoP-l (21) 
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Equation (19+~) implies that at least one of w_~ and w+~ is singular; by 
(20) both are, have the same eigenvalues, and hence can be simultaneously 
row/column reduced to, say, 

(~ iaei~"~ =(be  i/j ~) 
w_, = beiP j ,  w+ 1 \ iaei,, (22) 

That is, any parity-invariant, r =  1, one-dimensional, two-component QCA 
is unitarily equivalent to one with w_~ and w+~ in the form (22). Equation 
(21) implies 

[ce i' idei~ 
Wo - ~ ideia ceil. j (23) 

Using the forms (22) and (23) in Eq. (19 o) shows that y = a ,  O=fl  and 
d=-cb/a .  Finally, Eq. (19_1) forces 

a2 + bZ + c2(1 + bZ/a2)= 1 

and shows that the only nonzero solution occurs when c~ = ft. Thus we may 
factor out an overall phase and reparametrize to find that any nontrivial 
solution to Eq. (19,,) (20), and (21) is unitarily equivalent to 

,s n0  
w-I = c ~  c o s 0 J  w+l=c~  

Wo = sin p ( sin 0 - i cos 0) 
\ - i cos 0 sin 0 

(24) 

Our quantum particle automaton, with evolution rule given by (17), 
is the most general p = 0 solution; the one-dimensional lattice Boltzmann 
equation of Succi and Benzi ~8~ is unitarily equivalent to ours, as is the one- 
dimensional version of Bialynicki-Birula's unitary CA for the Dirac equa- 
tionJ ~9~ As two component QCA with p = 0, each of these models consists 
of a pair of independent automata supported on the spacetime cells 
t + x - O  and 1 (mod 2), respectively. Setting p ~ 0 (mod ~) couples these 
two automata. Figure 8 shows two simulations of a particle initially 
localized to be right-moving from x = 0, evolving with the same value of 0, 
but different values of p. Cell darkness is (positively) proportional to the 
probability tp*~h, where ~,* is the conjugate transpose of ~. Increasing the 
coupling p toward ~r/2 has the expected effect of decreasing the propagation 
speed. 
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Fig. 8. Two simulations of  the r = 1 two-component QCA starting with the same initial 
conditions. In both, 0 = n/4, while p = n/6 on the left and ~/3 on the the right. 

6. Q U A N T U M  L A T T I C E  G A S  A U T O M A T A  

Having reinterpreted our original QCA (9) as a quantum particle 
automaton (17), the lattice gas paradigm ~7~ suggests a different generaliza- 
tion than the two-component QCA with evolution rule (18), namely to 
m u l t i p l e  particles. A LGA is a CA in which the possible states of the 
field are taken to represent occupation by e-moving particles. The evolu- 
tion rule consists of two stages: each particle at x jumps to x + ~ and 
then the particles now at x interact to possibly change their directions of 
motion. 

In the single-particle interpretation of our QCA developed in Sec- 
tion 4, the wave function ~b,=~.,.~6,(x)Ix) describes the quantum state of 
the system at time t, where Ix) is the one-particle state defined in (10). The 
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scattering matrix S given in (8) may be taken to act on the basis states Ix) 
rather than on the coefficient amplitudes ~b,(x): 

= ~cos 0 I x -  1),+1 + i s i n  0 Ix) ,+l  
S i x > ,  U s i n O I x ) , + l + c o s O l x + l ) , + ~  

t ~ x (mod 2) 

t - x ( m o d  2) 

That is, the left (right)-moving particle jumps to the left (right) and either 
continues in the same direction with amplitude cos 0 or reverses direction 
with amplitude i sin 0; this is exactly the form of a (quantum) LGA evolu- 
tion rule. 

Generalization to multiple particles has both kinematical and dynami- 
cal aspects: c3~J The Hilbert space must be extended to have basis states 
Ix~ ..... x , , )  (denoting the configuration with n particles in states x~ ..... x,,). 
The familiar restriction in classical LGA to occupation numbers 0 and 1, 
i.e., an exclusion principle, is consistent with the fermionic character of the 
Dirac equation we found in the macroscopic limit of the quantum particle 
automaton. With this constraint the Hilbert space has dimension 2 N (if it 
is N for the corresponding QCA) since no two of the x,. in a basis state may 
be identical. Each particle still jumps at each timestep, but now there is the 
possibility that two particles (although no more than two if the exclusion 
principle is in effect) will jump to the same position at the same time. Thus 
the scattering matrix S must also be extended to include amplitudes S o. for 
the transitions i , - - j  where 00 <~ i, j <~ 11 (in binary) and the position of the 
l's in an index indicates the occupied particle states in the pair of cells (the 
position) under consideration. Retaining parity invariance from the one 
particle model and imposing particle number conservation, we define the 
most general local evolution rule by the scattering matrix 

S =  / ,~Q b c 

", c b 

~.,~ f 

which, just as in Section 2, must be unitary to ensure unitary evolution of 
the whole automaton. Dividing out an overall phase, we may parametrize 
S as (1 ) 

ie ~' sin 0 e ~ cos 0 
S = e ~ cos 0 ie ~' sin 0 

eifl 

(25) 
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Thus individual particles evolve just as before except for a multiplicative 
phase of e ~" at each timestep, unless two jump to the same position at the 
same time, in which case they exit multiplied by the phase e 'a. This is the 
simplest QLGA in one dimension. 

To simulate a deterministic or probabilistic LGA, it is sufficient to 
store only a single particle configuration at each timestep and then evolve 
it to the next with the appropriate probability (1 in the deterministic case). 
Each run produces a single final configuration; multiple runs produce the 
same probability distribution of final configurations as would computing 
the whole Markov process, i.e., multiplying a vector representing state 
probabilities by the Markov evolution matrix analogous to U. Because 
probabilities do not add in the quantum situation--there is interference in 
the coherent sum of amplitudes--only the latter procedure is viable for 

, : ; ,~g.~ , ~ : % ~  =~ ~ . " % . " g  % 

,,?o 

. ~ ~ . . . . . .  . . . . .  = 

: ; ii"ii ; :!!ii: oII!I :I! 
: ,:i,,~ 

S !iiiiiiiiiiiiiiii 
i.::'2:'..'::i:iiiiliiiiiiiillil 

Fig. 9. The  Q L G A  with scat ter ing ma t r ix  (25). The  s imula t ion  on  the left conta ins  a single 
par t ic le  ini t ia l ly at  x = 4 and x = 11 with equa l  ampl i tude .  The  one on the r ight  con ta ins  two 

particles,  ini t ia l ly at  x = 4 and x = 11. In bo th  s imula t ions  0 = n/4, ~ = 0, and  fl = - 3n/4. 
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a QLGA. For QLGA the dimension of the Hilbert space is exponential in 
the cardinality N of the lattice, so simulation is potentially exponentially 
slower than for deterministic/probabilistic LGA. With particle number con- 
servation, however, the problem is not completely intractable: for n fer- 
mionic particles the Hilbert (or Fock, as it would be called in the quantum 
field theory context) space has dimension u"  (,,), when n = 1 this is just the 
N amplitudes computed at each step in the one-particle simulations of 
Figs. 1-3 and 8. 

Figure 9 shows the next simplest situation, a QLGA with n = 2 inter- 
acting particles. Since one might expect that an interaction consisting only 
of phase multiplication (the e '~ term in S) would have little effect, Fig. 9 
compares the two-particle simulation with particles initially at x - - 4  (right- 
moving) and x--11 (left-moving) to a one-particle simulation with the 
particle initially at x - - 4  and x = 1 1 with equal amplitude. In each simula- 
tion cell darkness is (positively) proportional to the probability that a 
particle is present. The qualitative difference is immediately apparent. 

The difficulty of simulating the n-particle sector of the Fock space 
clearly grows polynomially with n ~ N. But note that there is a duality 
between the particles and the "holes" (the unoccupied states) which 
suggests that they should be considered to be antiparticles--not surprising 
since we saw in Section 4 that the one-particle sector limits to the Dirac 
equation. In fact, the scattering matrix (25) is the Minkowski space form 
of the Boltzmann weight in the symmetric six-vertex model, which is itself 
a specialization of the Boltzmann weight for the eight-vertex model: 

S =  
h / "  b c 

\ ~ /  c b 

where the downward-pointing arrows represent the antiparticles (the CP 
duals) of the original particles. Not only are these models exactly solv- 
able, ~32) but in the appropriate limit (critical point) the Minkowski space 
symmetric six-vertex model becomes the massive Thirring model. ~33) As 
usual, of course, exactly solvable does not mean that expectation values of 
all observables can be computed; even in the restricted parameter domain 
corresponding to probabilistic evolution only certain correlation functions 
have been computed. 134) This leaves a wide range of problems which may 
be most easily solved by simulation with this QLGA. 
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7. D I S C U S S I O N  

Motivated by the vision of quantum computation implemented at the 
device level as a QCA, we have investigated the simplest possible models 
in one dimension. Although elementary, the No-Go Lemma and its proof 
seem to be original. Evading its conclusion in order to construct a non- 
trivial QCA led us to the partitioning/alternating evolution rule which, tak- 
ing the contrapositive of H6non's dictum,'- we interpreted as a quantum 
particle automaton and then generalized to a QLGA. Although equivalent 
and similar models have been considered previously as regularizations of 
quantum field theories, c~8" 19. 331 in the probabilistic domain, t34~ and in the 
context of hidden variable theories, t361 ours seems to be the first unitary 
simulation. 

Decoherence of the quantum state either in memory registers t-'2~ or 
acted on by logical gates t23) places tight constraints on the number of com- 
putational steps which a quantum computer might perform reliably. QCA 
provide a simple model in which to study decoherence during time evolu- 
tion. To explore the potential for quantum computation with QCA we are 
currently simulating decoherence with these models, as well as investigating 
the possibility of relaxing the homogeneity condition to reflect the presence 
of local gates/devices/defects, nonperiodic boundary conditions, and exten- 
sion to higher dimensions, t3~ 

These investigations are closely related to several issues in fundamen- 
tal physics. From the assumptions of discreteness, locality, unitarity, (near) 
homogeneity, and parity invariance we were led to a theory of chiral fer- 
mions in one dimension. In fact, the No-Go Lemma was named to evoke 
the well-known Nielsen-Ninomiya Theorem concerning the doubling of 
fermions on the lattice, t37~ although the logic here is reversed: In 1 + 1 
dimensions there are several resolutions to the problem; t3s~ our one-com- 
ponent partitioning QCA is equivalent to Casher and Susskind's; t39~ refor- 
mulating it as a two-component QCA with t w o  independently evolving fer- 
mionic automata as in Section 5 resurrects the problem; and generalizing 
to the coupled evolution rule given by (18) and (24) is analogous to 
Wilson's solution, t4~ In a more general context than regularizing con- 
tinuum quantum field theories, the considerations involved here in impos- 
ing unitarity and locality on a discrete theory are also relevant to the 
causal set program for quantum gravity, t3~ These connections are not 
surprising: the relation between physics and computation has only been 
made more intimate by the introduction of quantum mechanics. 

2 "Lattice gases are at present often referred to as cellular automata. In the present note I wish 
to advance the thesis that nothing is gained by this practice, and that something is lost. ''t35~ 
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